Surface science of single-site heterogeneous olefin polymerization catalysts.
نویسندگان
چکیده
This article reviews the surface science of the heterogeneous olefin polymerization catalysts. The specific focus is on how to prepare and characterize stereochemically specific heterogeneous model catalysts for the Ziegler-Natta polymerization. Under clean, ultra-high vacuum conditions, low-energy electron irradiation during the chemical vapor deposition of model Ziegler-Natta catalysts can be used to create a "single-site" catalyst film with a surface structure that produces only isotactic polypropylene. The polymerization activities of the ultra-high vacuum-prepared model heterogeneous catalysts compare well with those of conventional Ziegler-Natta catalysts. X-ray photoelectron spectroscopic analyses identify the oxidation states of the Ti ions at the active sites. Temperature-programmed desorption distinguishes the binding strength of a probe molecule to the active sites that produce polypropylenes having different tacticities. These findings demonstrate that a surface science approach to the preparation and characterization of model heterogeneous catalysts can improve the catalyst design and provide fundamental understanding of the single-site olefin polymerization process.
منابع مشابه
Active site nature of magnesium dichloride-supported titanocene catalysts in olefin polymerization
Heterogeneous Ziegler-Natta and homogeneous metallocene catalysts exhibit greatly different active sitenature in olefin polymerization. In our previous study, it was reported that MgCl2-supported titanocenecatalysts can generate both Ziegler-Natta-type and metallocene-type active sites according to the type of activators.The dual active site nature of the supported titanocene catalysts was furt...
متن کاملSilsesquioxanes as molecular analogues of single-site heterogeneous catalysts
We discuss herein selected examples of metal complexes of polyhedral oligosilsesquioxanes (POSSs) as models of single-site heterogeneous surface catalysts. The utility of these compounds as such models is illustrated when employed as analogues of single-site titanium species supported on a silica surface. Deep insights into structure–functionality relationships can be gained. In particular, it ...
متن کاملModelling the catalyst fragmentation pattern in relation to molecular properties and particle overheating in olefin polymerization
A two-dimensional single particle finite element model was used to examine the effects of particle fragmental pattern on the average molecular weights, polymerization rate and particle overheating in heterogeneous Ziegler-Natta olefin polymerization. A two-site catalyst kinetic mechanism was employed together with a dynamic two-dimensional molecular species in diffusion-reaction equation. The i...
متن کاملPrecise Active Site Analysis for TiCl3/MgCl2 Ziegler-Natta Model Catalyst Based on Fractionation and Statistical Methods
In heterogeneous Ziegler-Natta catalysts for olefin polymerization, isolation of a single type of active sites is a kind of ambition, which would solve long-standing questions on the relationship between active site and polymer structures. In this paper, polypropylene produced by TiCl3/MgCl2 model catalysts with minimum Ti heterogeneity was analyzed by combined solvent fractionation and the two...
متن کاملIN SITU SILICA SUPPORTED METALLOCENE CATALYSTS FOR ETHYLENE POLYMERIZATION
Bis(2-R-ind)ZrCl2 (R: H or phenyl) was supported on different types of silica by in situ impregnation method and used for ethylene polymerization. In this method, the step of catalyst loading on support was eliminated and common alkyl aluminum (triisobutylaluminum, TiBA) cocatalyst was used instead of expensive methyl aluminiumoxane (MAO) cocatalyst in the polymerization. The effect of surface ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 42 شماره
صفحات -
تاریخ انتشار 2006